OMDc  1.0.0
created from 0b26fa0 on deploy-documentation
OMDc Namespace Reference

Optimal Mode Decomposition for control. More...

Classes

class  DataStore
 interface to internal representation of OMDc data More...
 
class  LineSearchFunctor
 Functor for linesearch along geodesic. More...
 

Detailed Description

Optimal Mode Decomposition for control.

The original identification problem is

\[ \min_{L,M,P} \Vert Y - LML^\top X - LPU \Vert_F^2 \qquad X = [s_0 \cdots s_{m-2}], \,\, Y = [s_1 \cdots s_{m-1}] \]

where the low-rank model

\[ L\in\mathbb{R}^{n\times r}, \,\, M\in\mathbb{R}^{r\times r} \,\, P\in\mathbb{R}^{r\times p} \]

shall approximate the given data set $S\in\mathbb{R}^{n\times m}$ for inputs $U\in\mathbb{R}^{p\times (m-1)} $. The original problem can be transformed into

\[ \min_L \Vert (I-LL^\top)Y +LL^\top \hat{Y} \big( I - \hat{X}^\top L ( L^\top \hat{X}\hat{X}^\top L )^{-1} L\top \hat{X} \big) \Vert_F^2 \quad \mathrm{s.t.} \,\,L^\top L = I \]

where

\[ \hat{X} = X \big(I - U^\top (U U^\top)^{-1} U\big) \qquad \hat{Y} = Y \big(I - U^\top (U U^\top)^{-1} U\big) \]

Automatic Control and Systems Theory, Ruhr-Univeristy Bochum